Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel.
نویسندگان
چکیده
It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical methodology to detect circulatory diseases.
منابع مشابه
A microfluidics approach towards high-throughput pathogen removal from blood using margination Citation
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Articles you may be interested in Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-...
متن کاملRed Blood Cells deformability index assessment in a hyperbolic microchannel: the diamide and glutaraldehyde effect
Red blood cells (RBCs) deformability can be defined as the ability of the cells to deform when subjected to certain flow conditions. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction was used to investigate the effect of both diamide and glutaraldehyde on the cell deformation index (DI) of human and ovine RBCs. An adequate image analysis techniq...
متن کاملAsymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation.
In microcirculation, red blood cells (RBCs) flowing through bifurcations may deform considerably due to combination of different phenomena that happen at the micro-scale level, such as: attraction effect, high shear, and extensional stress, all of which may influence the rheological properties and flow behavior of blood. Thus, it is important to investigate in detail the behavior of blood flow ...
متن کاملStudy of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model
A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...
متن کاملA Microfluidic Cross-Slot Device for Measurement of Erythrocyte Deformability
Red blood cell (RBC) deformation is a dominant factor in the rheological properties of blood in vessels smaller than 300 micrometers. A reduction in cell deformability is associated with health conditions such as malaria and diabetes. The extensional flow within a microfluidic cross-slot microchannel has been proposed as a mechanism for measuring the deformation of cells. Three-dimensional simu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomicrofluidics
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2013